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Abstract. We discuss the explicit analytical solution for the motion of  a charged quantum 
particle in a homogeneous magnetic field under the influence of a series of S-kicks of a cyclohm 
frequency. Transition probabilities between the Landau levels due to !&king axe expressed in 
terms of the Iacobi polynomials whose arguments contah the reflection coefficient from a series 
Of d-walls. 

1. Introduction 

The Schrodinger equation for a charged particle moving in a magnetic field, uniform in 
space but varying in time, was solved in [1-4] in the frame of the method of time- 
dependent quantum integrals of motion. In particular, the generalizations of the Fock- 
Landau stationary solutions, as well as the amplitudes and probabilities of transitions 
between the energy eigenstates (the Landau levels), were found both for the circular gauge 
of the vector potential A = $[H x 7-1 [2,3] and for the Landau gauge [4]. Among 
the other results obtained in [2-4] we would like to mention the exact propagators for a 
charged non-stationary oscillator and a free particle in uniform time-dependent elecbic and 
magnetic fields. Also, the time-dependent coherent states were constructed. They generalize 
the stationary coherent states of an oscillator, ‘introduced by Glauber [5], and those of a 
particle in a constant magnetic field, introduced in [6] (see also [7]). The other types of 
quantum states for a charge in a magnetic field, such as squeezed and correlated states, 
have been studied in [8-15]. The case of the relativistic (Klein-Gordon or Dim)  equations 
was considered in [16,17]. An extensive list of other references to the papers devoted to 
different aspects of charged particle motion in magnetic and electric fields can be found in 
[181. 

In this paper we apply the methods elaborated in [24 ]  (and exposed in detail, for 
example, in [19,20]) to give the exact explicit formulae (suitable for numerical analysis) 
for the transition probabilities between the energy levels when the magnetic field varies 
in time in the form of very short pulses. Besides deriving the general relations valid for 
any non-stationary magnetic field, we consider the special time dependence of the squared 
cyclotron fiequency in the form of periodic &pulses in time. There are two reasons for this 
choice. First, it enables us to obtain simple explicit expressions which can be analysed in 
detail. Second, it is known [21,22] that ‘8-kicked‘ systems can exhibit chaotic behaviour 
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under certain conditions. Therefore it is interesting to investigate the transition probabilities 
between the Landau levels in the case when a '&kicked' system admits exact solutions. In 
section 2 we show (following [2,31) the expressions for the integrals of motion and coherent 
states of a charge placed in the magnetic field of a solenoid which is uniform in space, but 
varying in time. In section 3 we give a generic expression for the probability distribution 
over the Landau levels of a charged particle subjected to a parametric excitation caused by 
pulses of the magnetic field. In section 4 we concentrate on the specific case of very short 
pulses modelled by a series of the periodic &kicks. Section 5 is devoted to the numerical 
analysis of the transition probabilities in the various special cases, and to the discussion of 
numerous two- and three-dimensional plots. 

2. Integrals of motion and coherent states 

Consider a particle with unit mass and charge placed in a classical electromagnetic field 
with the vector potential 

(1) 
where T is a vector defining the coordinates of the particle, and H(t)  is a homogeneous 
time-dependent axially symmetric magnetic field. Although the scalar potential is supposed 
to be equal to zero, the charge is affected not only by the varying magnetic field, but also 
by the electric field E(t) = -;[I%@) x T] (we assume c = f i  = 1). 

We suppose that the magnetic field vector H is directed along the z-axis. Ignoring the 
trivial component of the motion in this direction, we only treat the motion in the ( x ,  y)-plane, 
described by the Hamiltonian 

(2) 

$ H ( r )  is the Larmorfrequency. The spin-dependent part of the Hamiltonian 

By direct calculation it can be verified that the following Schrodinger operators commute 
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A(t) = i [ H ( t )  x TI 

A = $[(a + o(t)9)2 + (ay - W ( t ) f ) 2 ]  

where ~ ( t )  
is not considered here. 

with the operator (A - a /&) ,  and hence are integrals of motion: 

A(t) = i[&(t)(& + i8J - i i ( t ) ( j  - i?)]exp i w(z)  d t  (3) 

(4) 

[S '  I 
b(t) = ;[&(t)(by + i jx )  - ii(t)(f - i9)l exp [ - i / 'o ( r )d t ]  

where &(f) is any particular solution of the equation 

2 + d ( t ) &  = 0. (5) 
and 6, In order to get time-independent commutation relations of the operators A, 

6+ we choose the special solution of (5) 

~ ( t )  = j&,exp[iS'j&(r),-'dr]. (6) 

Then the modulus of the &-function must obey the equation 

d2 
dt2 
- 1 & 1 + ~ 2 ( t ) 1 & 1 - j & i - 3 = 0 .  

[A, A+] = [ E ,  ii+] =~ 1 

The following commutation relations hold 

[A, b] = [A, 6+] = 0. 

(7) 
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If the Larmor frequency assumes the constant value mi, when t + -CO, then we may 
choose the ‘initial solution’ of (5)  in the form 

Ein(r) = mil’exp (iwinr) ki,(t) = iwin&in(t) . (8) 

Ai, = m ; c [ 9  - 90 - i(f - f o ) ]  exp(2iwi.t) 
$. = win ( i o  - i90) 

The corresponding integrals of motion read as 

(9) 

(10) 
11’ 

where the operators 

.. 9 w y o = - - -  
2 2wi, 2 hi” 

.. f A 
xo=-+- 

are the well known centre-orbit coordinates of the particle moving in a constant magnetic 
field. From (9) and (10) it is evident that the eigenvalues of bin define the coordinates of 
the orbit centre in the ( x ,  y)-plane, while the eigenvalues of the operator dia exp(-2imi,t) 
give the relative coordinates of the particle with respect to the centre. 

The coherent state la, ,E; t )  is defined as the eigenstate of the time-dependent invariants 
A(t) and By): 

Al., B ;  t )  = .I., B ;  t )  a., B ;  t )  = PI., B ;  t)  

It can be represented as 

where U, fi  are arbitray complex numbers, and 

stands for the time-dependent Fock state. 

&a) = exp(aA+ - a*A) 
B(fi) = exp(BB+ - B*B) 

Using the commuting unitary displacement operators 

B-’(a),ifi(a) = A + a  
B-’(~)df i (~)  = B + B  

on the ground state 

we get the explicit form of the coherent state wavefunction in the coordinate representation 

(x .  yl., B ;  t )  = (x .  Y IB(a)B(P)lO, 0; t )  

where 

(14) 

(15) 
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3. Transition probabilities 

Let us take the magnetic field to be constant in the remote past and the remote future. More 
precisely, let us suppose 

V V Dodonov et a1 

w ( t )  = w i n  if t c 0 
w ( t ) = w f  if  CO. 

Under these conditions, as t + &CO there exist initial and final coherent states, as well as 
the initial and final Landau states. The transition amplitude connecting an initial state lin) 
with a final state I f )  is given by the matrix element ?;:;f = (flt + CO), where If + CO) 

stands for the t + CO limit of the state which coincided with the 1in)-state when t + -00. 
It is convenient to define the 'final' operators as 

(16) A,+ = ( 4 q ) - ' / ' [ j X  + idy + : E)] exp[i(iqt + po)] 
kf = (4~f)-'/~exp(-iqO)[j, + iEX +of(.? - ii)] (17) 

where the additional phase equals 

rpo = l m [ w ( t )  - q] dt . 
The coherent states related to the constant field H f  are given in Cartesian coordinates by 

( x ,  y ~ y ,  w; f) = (z) 'I2 exp [-+(2i& + q ( X 2  + r2) + 1y12 + I ~ I Z ) ]  

x exp [ w y ( p ( x  + iy)e'" + iy(x - iy)e-'cblr+*)) - iype-'elr] . (18) 
For the Fock-Landau states a simple expression can be written in polar coordinates (p, p )  

(p,plml,m2; f) =i"'(-l)p (O:qP!)'/'exp[i(mz - - m l ) ( q + q o ) l  

z I h - m l / z  jm,-mzl  x e x p [ - ~ o f p 2 - i ( ~ m , + 1 ) o f t ] ( o f p  ) L, (0,P2) (19) 
where p = min(ml, mz), q = max(m1, mz), and LF(z) means the associated Laguerre 
polynomial. 

Comparing (16) and (17) with (3) and (4) we get the linear relations 

A(t) = eiY(FAf +vi;) (20) 

k(t)  = ey'1'q + (kf) (21) 

where 

The choice of the E-function in (6) results in the identity 

I t12  - 1'112 = 1 .  (25) 
In the limit oft + 00 (or when the magnetic field takes the final constant value after time 
T, as in the special case considered in the next section) U = 0, so that $ and q become 
constant coefficients related to the E-function as follows: 

~ f ( t )  = w?'"[e exp(iwft) - iqexp(-iwft)l. (26) 
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Since the solutions of the Schrodinger equation are given in terms of the function E ( t ) ,  all 
the transition amplitudes are completely determined by the parameters 

For lhe transition amplitude between coherent states la, p;  in) and iy, p; f) we get 
and q. 

TY." a,B - - P e x p [ - $ ( ~ & +  ~ P ~ ~ + I J ? +  I ~ I ' ) + ~ - ' ( ~ ~ ~ * + B c L * + ~ Y *  - Y * / L * ~ ) ] .  

(27) 

Using this formula and the property that the coherent state is the generating function 
for number states one can find the transition amplitudes between the energy and angular 
momentnm eigenstates: 

(0  

when nz > nl, mi > ni, i = 1,2; 
(ii) 

when n2 2 nl, mi c ni, i = 1,2. 
Here P$"(X) means the Jacobi polynomial. The initial and final quantum numbers 

must satisfy the relation m2 -ml = n2 -n , ,  which is merely the conservation of the angular 
momentum L,. Both (28) and (29) are related to the positive values Lz = n2 - nl 2 0. In 
the case of negative L; one should make the replacement of indices 1 e 2. If we did not 
introduce the phase in the definition of the final states (18) and (19), it would appear in 
the transition amplitudes. 

The transition probability in case (i) reads 

where 

In case (ii) one should change ni ++ mi, i = 1,2. 

determined by the probability of remaining in the ground state 
We see that the transition probabilities between all Landau levels are completely 

W E  = 1 - R .  

The probabilities do not depend on the sign of L,: 
m m  = Wmimi , 

WlLlO2 n m  
Moreover, 

(32) W m m  = ww2 
"la% m m 2  ' 

From the general principles of quantum mechanics it follows that the last relation must 
hold for any time-reversible Hamiltonian. The Hamiltonian (2) is not timereversible in the 
general case, nonetheless (32) is valid. One can easily understand this fact if it is taken into 
account that (5) may be treated as the one-dimensional stationary Schrodinger equation 

@'' + 2[E - U ( x ) ] @  = 0 
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provided time t is replaced by the coordinate x ,  and the effective potential U ( x )  is given 
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by 
O * ( X )  = m;* + 2[Lr(-m) - U ( X ) ]  E = +U;" + rr(-ca). 

Then parameter R (see (31)) can be interpreted as the probability reflection coefficient of 
a particle moving through the potential U ( x ) ,  and (32) is a consequence of the known 
property of this coefficient that it is the same for waves moving from the left or the right. 

4. &kicking 

We now proceed with calculating the transition probabilities between the Landau levels 
caused by a set of N 8-pulses of the magnetic field, when the Larmor frequency varies in 
time as 

(33) 1 N-1 

0 2 ( t )  = WO" 1 + 2 ~ 0 ; '  ~ ( t  - jT) 11 j=O 

where K > 0 is a dimensionless parameter characterizing the strength of kicks. In this 
specific case the initial Larmor frequency coincides with the final one: U;, = of = W. 
The effective potential introduced at the end of the preceding section reads 

and the effective wavenumber of a particle moving through this potential well equals oo. 
After the Ith kick the solution of (5) can be represented as (see (26)) 

~ ( t )  = o;"~[<, exp(iw0t) - iql exp(-ioor)l 
with t o  = 1 and 170 = 0. The matching conditions for the &-function and its derivatives 
yield the following recurrence relations between the coefficients .$ = f l  exp(io0lT) and 
6, = ql exp(-ioolT) before and after every kick 

where 

In the case of the single kick, ( N  = 1) we get 
t i = l f i K  q i = K  

so that the reflection coefficient is a simple monotonous function of the kick strength 

A more interesting behaviour of this coefficient is observed for the multiple kicks. Then 

and since matrix S is unimodular, detS = 1, its powers can be expressed as (see, for 
example, [23,24]) 

SN = U N - I ( ~ T ~ S ) O S - U N - - ~ ( ~ T ~ S ) O I  (36) 
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where I means the unit matrix, and U,(x) is the Chebyshev polynomial of the second kind, 
sin@ + 1)8 

sin 8 
V,,(cos 8) = 

If @ = nm with m = 1,2,3, . . . , then the response of the system to N &kicks is equivalent 
to its reaction to a single impulse with an amplitude multiplied by N, because U"(1) = n + l .  
But for other relations between the Larmor frequency and the period of kicking the reflection 
coefficient may be a highly oscillating function of K ,  since the nth Chebyshev polynomial 
has n zeros in the interval -1 < x < 1. From the definition of the polynomial UN-~(COS~)  
we see that its zeros correspond to the values x$"' = cos(nm/N) with m = 1,2, . . . , N -  1. 
Suppose for definiteness that sin @ > 0 and cos @ > 0. Then the reflection coefficient turns 
into zero for K;"' = [cos(@) - cos(nm/N)]/sin@ (more precisely, for those values of m 
that yield K$"' > 0, since the parameter K is assumed to be.non-negative). If the number of 
kicks N is sufficiently large, then the value of K changes only slightly when m is replaced 
by m + 1. In such a case the local maxima of the function R(K) are located near the points 
KZ = (cos(@) - COS(X[2m + 1]/2N)j/sin @ with m = 1,Z.. . . , N - 2. Therefore at 
N >> 1 the function R ( K )  exhibits strong oscillations with the envelope 

Such a picture is observed until K FZ: K* = cot(@/2). In the vicinity of the point K* 
the behaviour of the curve R(K) changes rapidly, and it approaches the asymptotic line 
R = 1. For instance, if @ = n/2, then the transition point is K* = 1, and R(K) exhibits 
approximately N/2 oscillations with a simple parabolic envelope R,, = K'. But for @ << 1 
the transition point goes far into the region of large kick magnitudes: K, % 2/@ >> 1. In this 
case approximately N oscillations can be observed, and the envelope Rm&) FZ: K ' / ( K + @ ) ~  
practically coincides with the asymptotic line almost from the beginning. It is interesting 
to note some instability in the behaviour of the function R&, @) at the points Q, = n m .  
For example, if @ = n - E ,  then x FZ: -1 - EK, so that the reflection coefficient exhibits no 
oscillations when K increases from zero. However, for @ = H + E we have x x -1 + E K ,  

and strong oscillations are observed. 

5. Influence of kicks on the occupation of Landau levels 

This section is devoted to the 'visualization' of the formulae given above. Let us begin 
with (30). In fipre 1 we plot the values of W$"(R) versus m l  E [O, IO] and R E (0, I]. 
In this case the absolute maximum of probabilities is achieved for small values of ml and 
R. As soon as ml increases the maximum shifts to the right in the R-increasing direction. 
This is seen distinctly in figure 2, where a two-dimensional graph of W$(R) is reported. 
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Figure 1. Wz"l(R)  with ml E (0.10). R E (0, 1). 

0.06 

0 .05  

s0.04. 

50.03. 
L 

0.02 .  

5 

/ \ '  

0 . 0 l t  li 
\ J  

0 0.2 0 .4  0 . 6  0.8 I Figure 2. Two-dimensional plot of W$(R) 
0 

I( with R E (0. 1). 

Figure 3. W;I"'(R) with m ]  E (0, IO], R E (0, I1 

When we move from the initial state IO, 0) to higher states the plots become more 
interesting. For instance, the plot of W:'" shown in figure 3 has a richer structure: 
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0.12 

0.1 
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Figure 5. W;'"'-"(R) withml E (0, lo), R E (0.1). 

although the absolute maximum for the probabilities is still at R - 0, it now corresponds 
to ml = 1. When ml increases this maximum moves to R = 1. Moreover, the second 
maximum arises, as shown in figure 4. Since the Jacobi polynomial has zeros when its 
argument is within to the interval ( -1 ,  l), it is not surprising that the probabilities become 
zero for some values of R different from 0 and 1. For example, 

W;f'"'(R) = $(l - R)R"-'(ml - 1 +(mi + 1)(1- ZR))' 

and this function has three zeros R = 0, R = 1, R = ml/(ml + 1). 
In figure 5 we show the behaviour of W Y P ' - ' ) ( R )  for ml E {0,10], R E {0,1). The 

two maxima get closer in amplitude, as one can verify comparing figures 6 and 4. This 
time the zeros for WYf"' - ' ' (R)  are R = 0, R = 1. and R = (ml - l ) / (ml  + 1). 

Figures 7 and 9 correspond to W:'pm,-l) and Wm1,(m1-3) ( R ) ,  respectively. The zeros 
of Wml.o"l) ( R )  (besides R = 0 and 1 )  are given by 

m : - l + , / J 3 0  

m: -+ 3m1-1-2 
R =  

The two-dimensional graphs of W$(R) and W::(R) shown ir figures 8 and 10 
demonstrate the presence of three and four distinct maxima, respectively. 
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0 0.2 0 . 4  0 . 6  0.8 1 Figure 6. Tbmdimensional plM of WZ(R) 
R with R E (0, I]. 

Figure 7. W~''"'l-l'(R) withmi E (0,101, R E (0.11. 

Finally figures l l ( n )  and (b) show &e behaviour of R versus K as a function of 4 and 5 :  
R = lq/51*. In figure ll(a) we let K E IO, 2)  because, in this case, R very rapidly reaches 
the asymptotic value R = 1. In figure ll(b) the behaviour of R is more interesting. 
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Figure 9. W2.'"-3'(R) with ml E (0, lo), R E [OJ). ~ o ~ ~ l  &L15 L E 

0.1 

0.05 

0 
0 0.2 0 . 4  0.6 0.8 1 

R 

0 . 4  

0.2 

0: 

I 
0.25 0.5 0.75 1 1.25 1.5 1.75 2 

Figure 10. Two-dimensional 
with R E (0, I}. 

plot of 

Figure 11. (Q) Two-dimensional plot of R = R ( x )  with Q = 112, N = 3, K E {O, 2). (b) 
Two-dimensional plot of R = R ( K )  with Q = n/6. N = 11. K E (0,4). 

Acknowledgments 

0 V Man'ko and P G Polynkin thank the Russian Science Foundation and Professor 
T Seligman for support of the work. V I Man'ko thanks the University of Naples for 
their kind hospitality. 



208 V V Dodonov et a1 

References 

[I]  Lewis H Rand Riesenfeld W B 1969 J. Marh. Phys. 10 1458 
[21 Malkin I A. Man’ko V I and Trifonov D A 1969 Phys. Lett 30A 414; 1970 Zh Eksp. Eor. Fiz 58 721 

PI Malkin I A and Man’ko V I 1970 2% &p. nor. Fir. 59 1746 (Engl. transl. 1971 SOP. Phys- JETP 32 949) 
[4] Dodonov V V, Makin I A and Madko V I 1972 Physica 59 241 
[5] Glauber R J 1963 Phys. Rev. 131 2766 
[61 W n  I A and Man’ko VI 1968 Zh. Eksp. %or. Fiz 55 1014 (Engl. transl. 1969 Sov. Phys.-JETP 28 527) 
[7] Feldman A and Kahn A H  1970 Phys. Rev. B 1 4584 
[SI Dodonov V V, Kurmyshev E V and Man’ko V I 1988,Proc. Lebedev Physics Institute vol 176, ed M A 

Markov (Commack: Nova Science) D 169 

(Engl. uml. 1970 SOP. Phys.-JETP 31 386); 1970 Phys. Rev. D 2 1371 

. . 

.. 
I91 Bechler A I988 Phys. Len. 130A 481 

1101 Jannussis A, Vlahos E, Skaltsas D, Kliros G and 6a1tzis V 1989 NMOVO Cimento B 104 53; 1990 H d w n i c  . .  
J, 13 435 

1111 Abdalla M S 1991 Phw. Rev. A 44 2040 
[12] BaseiaB 1992 Phys. Lff. 170A 311 
[I31 Basein B, Mipahi S S and Moussa M H Y 1992 Phys. Rev. A 46 5885 
[14] Aragone C 1993 Proc. 2nd h t .  Workshop on S q & e d  States nnd Uncertainry Relotions (Moscow, 1992) 

NASA Conference Publication 3219 ed D Han. Y S Kim and V I Man’ko (Greenbelt: NASA) p 311; 
1993 Phys. Lett. 175A 377 

[E] Dodonov V V, Man‘ko V I and Poly&in P G 1994 Phys. Len. l88A 232 
[I61 Dodonov V V. Malkin I A and Man’ko V I1975 Lett. Nuovo Cimento 14 241; 1976 Physica 82A 113; 1976 

[I71 Bagrov V G, Buchbinder I L and Gitman D M 1976 3. Phys. A: Math Gen. 9 1955 
[I81 Johnson B R, Hinchfelder J 0 and Yang K H 1983 Rev. Mad Phys 55 109 
[I91 Makin I A and Man’ko V I 1979 Dynamical Symmetries and Coherent States of Quantum Systems (Moscow: 

[20] Dodonov V V and Man’ko V 1 1989 Invariants and evolution of nonstationary quanhlm systems Pmc. 

[21] Chirikov B V 1986 Found. Phys. 16 39 
[22] Haake F and Walls D 1987 Pkys. Rev. A 36 730 
[23] Maitland A and Dunn M H 1969 Laser Physics (Amsterdam: North-Holland) Appendix C 
[24] Dodonov V V, Man’ko 0 V and Man’ko V I 1993 Phys. Lett. 175A 1 

J. Phys. A: Marh Gen. 9 1791 

Nauka) (in Russian) 

Lebedev Physics Imtifute vol 183, ed M A Markov (Commack Nova Science) p 263 


